La présentation, l'orthographe et la qualité de la rédaction seront prises en compte. Les résultats devront être encadrés.

En DM, un travail efficace est un travail régulier sur la totalité du délai.

Exercice 1 (Rattrap'cours)

Les questions 1 et 2 de cet exercice sont indépendantes.

1. Soient
$$I = \int_0^1 \frac{e^t}{e^t + e^{1-t}} dt$$
 et $J = \int_0^1 \frac{e^{1-t}}{e^t + e^{1-t}} dt$.

- (a) Justifier que les intégrales I et J sont bien définies.
- (b) Calculer I + J.
- (c) Montrer que I = J (on pourra effectuer le changement de variable x = 1 t)
- (d) En déduire la valeur de I et J.
- 2. Calculer $\int_1^{e^{\pi}} \sin(\ln(t)) dt$ (on pourra penser à l'intégration par parties).

Exercice 2

On définit pour tout $n \in \mathbb{R}$

$$I_n = \int_0^1 e^{-n\ln(1+t^2)} dt.$$

- 1. Pourquoi l'intégrale I_n est-elle ainsi bien définie pour tout $n \in \mathbb{Z}$?
- 2. Calculer I_0 et I_1 .
- 3. (a) Exprimer $\int_0^1 \frac{t^2}{(1+t^2)^2} dt$ en fonction de I_1 et I_2 .
 - (b) À l'aide d'une intégration par parties, déterminer une relation entre I_2 et I_1 . En déduire la valeur exacte de I_2 .
- 4. En vous inspirant de cette méthode, trouver une relation de récurrence entre I_{n+1} et I_n pour tout n > 0.
- 5. (a) Pour tout $n \in \mathbb{N}$, exprimer I_{-n} à l'aide d'une somme.
 - (b) Exprimer I_{-1} et I_{-2} sous forme de fractions irréductibles.

Problème 1

On considère l'équation différentielle

$$xy' - y + x = 0 \tag{E}$$

- 1. Déterminer les solutions de cette équation séparément sur $]-\infty,0[$ et sur $]0,+\infty[$.
- 2. Existe-t-il des solutions (donc continues, dérivables) de (E) sur \mathbb{R} tout entier?
- 3. On s'intéresse maintenant aux solutions définies sur $]0, +\infty[$. Étant donnés $x_0 > 0$ et $y_0 \in \mathbb{R}$, donner l'expression de la solution de (E) qui vaut y en x_0 .
- 4. Si on appelle \mathcal{C}_0 la courbe intégrale correspondante, donner une équation de la tangente en x_0 à \mathcal{C}_0 .
- 5. x_0 étant fixé, montrer que toutes les tangentes obtenues en faisant varier y_0 dans \mathbb{R} tout entier sont concourantes en un point que l'on précisera.
- 6. Montrer que les courbes intégrales de toutes les solutions de (E) admettent toutes un maximum sur \mathbb{R}_+^* et déterminer le lieux des points correspondants.
- 7. Représenter l'allure de quelques courbes intégrales, les tangentes et les maxima évoqués dans les questions précédentes.

Problème 2

On considère l'équation différentielle

$$x^2y'' + y = x^3 - x^2 (E)$$

et l'équation homogène associée

$$x^2y'' + y = 0 \tag{H}$$

Dans tout le problème on se place sur l'intervalle $I =]0, +\infty[$. On notera classiquement

$$j = e^{2i\pi/3} = \frac{1}{2} + i\frac{\sqrt{3}}{2}.$$

A Résolution de l'équation

- A.1 Trouver une solution particulière y_1 de (E) sur I sous la forme d'un polynôme de degré 3.
- A.2 Montrer que y est solution de (E) si et seulement si $y y_1$ est solution de (H).
- A.3 On pose la fonction auxiliaire z = xy' + jz.
 - (a) Montrer que y est solution de (H) si et seulement si z est solution de l'équation

$$x^2y'' + y = 0 (H')$$

- (b) Résoudre (H') et en donner les solutions à valeurs complexes.
- (c) En déduire les solutions complexes de (H).
- (d) Déterminer les solutions complexes de (E) puis les solutions réelles de (E) sur l'intervalle I.

B Autre méthode de résolution de (E)

Pour $x \in I$, on pose $t = \ln x$ et si $x \mapsto y(x)$ est une fonction deux fois dérivable sur I, on définit la fonction $g: t \mapsto y(e^t)$.

- B.1 Pourquoi g est-elle alors bien définie sur \mathbb{R} .
- B.2 Montrer que y est solution de (E) sur I si et seulement si g est solution sur \mathbb{R} de

$$g'' - g' + g = e^{3t} - e^{2t} (E')$$

- B.3 Résoudre (E') et donner les solutions réelles pour g.
- B.4 En déduire les solutions réelles pour y sur I.

C Autre méthode de résolution de (H)

Pour $x \in I$, on pose $y(x) = z(x)e^{-j\ln x}$.

C.1 Montrer que y est solution de (H) si et seulement si z est solution de l'équation

$$xz'' - 2jz' = 0 \tag{K}$$

- C.2 Résoudre (K) afin d'en obtenir les solutions complexes.
- C.3 En déduire les solutions complexes puis les solutions réelles de (H) sur I.