Les calculatrices et les documents sont interdits.

Les résultats devront être encadrés.

La présentation, l'orthographe et la qualité de la rédaction seront prises en compte.

Exercice 1

Dans cet exercice, on pose $a,b \in \mathbb{R}$ avec a < b.

Un théorème d'analyse

Soient f et g deux fonctions continues sur [a,b] et dérivables sur]a,b[. On veut montrer qu'il existe $c \in]a,b[$ tel que (f(b)-f(a))g'(c)=(g(b)-g(a))f'(c).

On pose

$$h: t \mapsto (f(b) - f(a))(g(t) - g(b)) - (g(b) - g(a))(f(t) - f(b)).$$

- 1. Montrer qu'il existe $c \in]a,b[$ tel que h'(c) = 0.
- 2. Conclure.

Règle de l'Hôpital

Pour cette partie, soient f et g deux fonctions continues sur]a,b[et dérivables sur]a,b[. On suppose que g et g' ne s'annulent pas sur]a,b[et que les limites en a^+ de f et g sont nulles.

Le but de cette partie est de montrer que si $\frac{f'}{g'}$ admet une limite en a^+ , alors $\frac{f}{g}$ également et qu'on a

$$\lim_{x \to a^+} \frac{f'}{g'} = \lim_{x \to a^+} \frac{f}{g}$$

- 3. Montrer que f et g sont prolongeables par continuité en a en donnant les valeurs de f(a) et g(a).
- 4. D'après la première partie, montrer que pour tout 0 < h < b a, il existe $c_h \in]a, a + h[$ tel que

$$(f(a+h) - f(a))g'(c_h) = (g(a+h) - g(a))f'(c_h)$$

5. En déduire que pour tout 0 < h < b - a, on a

$$\frac{f(a+h)}{g(a+h)} = \frac{f'(c_h)}{g'(c_h)}.$$

- 6. Donner la limite de c_h quand h tend vers 0.
- 7. Conclure.
- 8. Exemple. À l'aide de ce résultat, montrer que

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$$

et retrouver un équivalent bien connu.

Problème 1

Un exemple.

On travaille ici dans le \mathbb{R} -espace vectoriel \mathbb{R}^3 et on pose

$$D = \{(x, y, z) \in \mathbb{R}^3 \text{ tels que } x + y = 0 \text{ et } x + z = 0\}.$$

ainsi que

$$H_1 = \{(x, y, z) \in \mathbb{R}^3 \text{ tels que } x + y = 0\}$$
 et $H_2 = \{(x, y, z) \in \mathbb{R}^3 \text{ tels que } x + z = 0\}.$

- 1. Montrer que D, H_1 et H_2 sont des sous-espaces vectoriels de \mathbb{R}^3 .
- 2. Donner une base et la dimension de D.
- 3. Donner des bases et préciser les dimensions de H_1 et H_2 .
- 4. Exprimer D comme l'intersection de deux sous-espaces de \mathbb{R}^3 de dimension 2.

Droites

On travaille toujours dans \mathbb{R}^3 . Soient a et b deux nombres réels fixés. Dans cette partie, on appelle D = Vect((a,b,1)).

- 5. Donner une base et la dimension de D.
- 6. Montrer que les familles $\{(a,b,1),(1,0,0)\}$ et $\{(a,b,1),(0,1,0)\}$ sont libres dans \mathbb{R}^3 .
- 7. On pose $H_1 = \text{Vect}\{(a,b,1),(1,0,0)\}$ et $H_2 = \text{Vect}\{(a,b,1),(0,1,0)\}$. Montrer que H_1 et H_2 sont de dimension 2 et que $D = H_1 \cap H_2$.
- 8. On suppose dans cette question que $(a,b,0) \neq (0,0,0)$. On appelle G = Vect((a,b,0)) et on note $G_1 = \text{Vect}\{(a,b,0),(0,0,1)\}$ et $G_2 = \text{Vect}\{(0,1,0),(1,0,0)\}$. Montrer que G_1 et G_2 sont de dimension 2 et que $G = G_1 \cap G_2$.
- 9. Démontrer en toute généralité que toute droite de \mathbb{R}^3 (autrement dit tout sous-espace de dimension 1) est l'intersection de deux plans (c'est-à-dire deux sous-espaces de dimension 2) de \mathbb{R}^3 .

Formule de Grassmann

Cette partie, indépendante des autres, a pour but de démontrer la formule de Grassmann, aussi appelée formule des quatre dimensions. On pourra l'utiliser dans la suite du problème, même si on n'a pas réussi à la démontrer intégralement. Divers résultats théoriques y sont également présentés, loin d'être tous difficiles.

Soit E un \mathbb{R} -espace vectoriel de dimension finie n > 0 et F un sous-espace vectoriel de E.

- 10. Montrer que F est un espace vectoriel de dimension finie, inférieure ou égale à dim E.
- 11. Montrer qu'il existe un sous-espace G de E tel que $E = F \oplus G$ et montrer que dim $E = \dim F + \dim G$.
- 12. Soit A et B deux sous-espaces vectoriels de E
 - (a) Montrer que $A \cap B$ est un sous-espace vectoriel de B.
 - (b) Soit B' un supplémentaire de $A \cap B$ dans B. Montrer que A et B' sont en somme directe.
 - (c) En déduire la formule de Grassmann:

$$\dim(A+B) = \dim A + \dim B - \dim(A \cap B)$$

Deux hyperplans

Dans cette partie, on considère un espace vectoriel E de dimension n > 0. On appelle **hyperplan** de E tout sous-espace de E de dimension n - 1. On considère deux hyperplans de E, notés H_1 et H_2 .

- 13. Montrer que $\dim(H_1 \cap H_2) \leq n-1$.
- 14. À l'aide de la formule de Grassmann, montrer que $\dim(H_1 + H_2) \ge n 1$.
- 15. Si $\dim(H_1 + H_2) > n 1$, à quoi l'espace $H_1 + H_2$ est-il égal?
- 16. Montrer que si dim $(H_1 + H_2) = n 1$, alors $H_1 = H_2$. (on pourra utiliser à nouveau la formule de Grassmann)

Plusieurs hyperplans

Dans cette partie, on considère un espace vectoriel E de dimension $n \ge 2$. Soit F un sous-espace de E de dimension $p \in [1, n-1]$.

- 17. Justifier que $F \neq \{0_E\}$ et que $F \neq E$.
- 18. Montrer qu'il existe une base (e_1, \ldots, e_n) de E telle que (e_1, \ldots, e_p) soit une base de F.

Pour tout $i \in [p+1,n]$, on pose

$$H_i = \text{Vect}\{e_1, \dots, e_{i-1}, e_{i+1}, e_n\}.$$

- 19. Montrer que pour tout $i \in [p+1,n]$, H_i est un hyperplan de E.
- 20. Montrer que $F = H_{p+1} \cap \ldots \cap H_n$.
- 21. Montrer que dans un espace vectoriel de dimension $n \in \mathbb{N}^*$, tout sous-espace de dimension p < n est l'intersection de n p hyperplans.

Problème 2

Fonctions lipschitziennes

Soient I un intervalle de \mathbb{R} et $k \in \mathbb{R}_+$. On dit qu'une fonction $f: I \to \mathbb{R}$ est k-lipschitzienne sur I si

$$\forall x, x' \in I, |f(x') - f(x)| \leqslant k|x' - x|.$$

On dit que f est lipschitzienne sur I lorsqu'il existe $k \in \mathbb{R}_+$ telle qu'elle soit k-lipschitzienne.

- 1. Déterminer les fonctions 0-lipschitziennes.
- 2. Soit $k \in \mathbb{R}_+$. Si f est k-lipschitzienne, montrer qu'elle est k'-lipschitzienne pour tout nombre réel $k' \ge k$.
- 3. Quelques exemples.
 - (a) Pour tout $\lambda \in \mathbb{R}$, montrer que $x \mapsto \lambda x$ est $|\lambda|$ -lipschitzienne.
 - (b) Montrer que la fonction cos est 1-lipschitzienne.
 - (c) Montrer (par exemple en raisonnant par l'absurde) que $x \mapsto \sqrt{x}$ n'est pas lipschitzienne.
- 4. Montrer que toute fonction lipschitzienne est continue.
- 5. Montrer que si f est de classe \mathcal{C}^1 sur un intervalle [a,b], alors elle est lipschitzienne.

Fonctions convexes

Petit rappel : étant donnés $x_1, x_2 \in \mathbb{R}$, le nombre $\lambda x_1 + (1 - \lambda)x_2$ est le barycentre de x_1 et x_2 avec coefficients λ et $1 - \lambda$. Ainsi, on peut décrire le segment $[x_1, x_2]$ comme l'ensemble $\{\lambda x_1 + (1 - \lambda)x_2, \lambda \in [0, 1]\}$. Par définition, on dit que $f: I \to \mathbb{R}$ est **convexe** sur I si

$$\forall x_1, x_2 \in I, \forall \lambda \in [0,1], f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2).$$

l'inverse, on dit que f est **concave** si

$$\forall x_1, x_2 \in I, \forall \lambda \in [0,1], f(\lambda x_1 + (1-\lambda)x_2) \geqslant \lambda f(x_1) + (1-\lambda)f(x_2).$$

- 6. Si l'on appelle \mathscr{C} sa courbe représentative, montrer que f est convexe si et seulement si l'arc de \mathscr{C} compris entre M_1 d'abscisse x_1 et M_2 d'abscisse x_2 est situé en dessous du segment $[M_1M_2]$.
- 7. Montrer que f est convexe et concave si et seulement si elle est affine.
- 8. Montrer que si f est concave, alors -f est convexe.
- 9. Soit $n \ge 2$ un nombre entier. Montrer que pour tous $x_1, \ldots, x_n \in I$ et $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ tels que $\sum_{i=1}^n \lambda_i = 1$, on a

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \leqslant \sum_{i=1}^{n} \lambda_i f(x_i).$$

- 10. Montrer que les trois propriétés suivantes sont équivalentes.
 - (i) f est convexe.
 - (ii) Pour tous $x, y, z \in I$ tels que x < y < z, $\frac{f(y) f(x)}{y x} \leqslant \frac{f(z) f(x)}{z x} \leqslant \frac{f(z) f(y)}{z y}$.
 - (iii) Pour tout $a \in I$, la fonction $\Phi_a : I \setminus \{a\} \to \mathbb{R}$ est croissante sur $I \setminus \{a\}$. $x \mapsto \frac{f(x) f(a)}{x a}$
- 11. Soit $f \in C^1(I)$. Montrer que f est convexe si et seulement si f' est croissante sur I. Peut-on affirmer qu'une fonction f est convexe si et seulement si f'' est positive?
- 12. Soit $f \in \mathcal{C}^2(I)$ une fonction convexe. Montrer que sa courbe représentative \mathscr{C} est au-dessus de toutes ses tangentes.
- 13. Montrer que $x \mapsto e^x$ est convexe. En déduire que

$$\forall t \in \mathbb{R}_{+}^{*}, \ln t \leqslant t - 1.$$

14. Montrer que $t \mapsto -\ln t$ est convexe. En déduire que si $n \in \mathbb{N}^*$, alors pour tous $x_1, \dots, x_n \in I$, on a

$$(x_1 + \ldots + x_n)^{1/n} \leqslant \frac{x_1 + \ldots + x_n}{n}.$$

- 15. (a) Soit $f: [A, +\infty[\to \mathbb{R}]$ une fonction convexe et majorée. Montrer que f est décroissante sur $[A, +\infty[$.
 - (b) Soit $f:]-\infty, B] \to \mathbb{R}$ une fonction convexe et majorée. Que dire de f?
 - (c) Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction convexe et majorée. Que dire de f?
 - (d) Application : soit $q: \mathbb{R} \to \mathbb{R}$ une fonction continue, positive, non identiquement nulle sur \mathbb{R} . Soit $y \in C^2(\mathbb{R})$ une solution de l'équation différentielle y'' + qy = 0. Montrer que y s'annule sur \mathbb{R} .