TD 8. Nombres réels et suites numériques

8.1 Nombres réels

Exercice 8.1

- 1. Démontrer que $\forall a,b \in \mathbb{R}_+^*, \sqrt{a+b} \leqslant \sqrt{a} + \sqrt{b}$ et étudier le cas d'égalité.
- 2. Démontrer que $\left|\sqrt{|a|} \sqrt{|b|}\right| \leqslant \sqrt{|a-b|}$.

Exercice 8.2

Soit $f:[0,1] \to [0,1]$ une fonction croissante. Soit $E = \{x \in [0,1] \mid f(x) \ge x\}$.

- 1. Montrer que E admet une borne supérieure notée b.
- 2. Montrer que f(b) = b. (on pourra étudier les cas f(b) < b et f(b) > b)

Exercice 8.3

Déterminer, si elles existent, la borne supérieure, la borne inférieure le minimum et le maximum des ensembles suivants.

1.
$$\left\{ \frac{x^2+1}{x^2+2}, x \in \mathbb{R} \right\};$$

3.
$$\left\{ (-1)^n + \frac{1}{n} \right\}$$
,

2.
$$\left\{ \frac{1}{n} + \frac{1}{m}, (n, m) \in (\mathbb{N}^*)^2 \right\};$$

4.
$$\{x \in \mathbb{Q}, x^2 - 3x + 2 < 0\}.$$

Exercice 8.4

Soient A et B deux parties non vides et bornées de \mathbb{R} .

- 1. Montrer que $A \cup B$ est majorée et que $\sup(A \cup B) = \max(\sup A, \sup B)$.
- 2. Énoncer un énoncé analogue pour $\inf(A \cup B)$.
- 3. Que peut-on dire de $A \cap B$?

8.2 Suites numériques

Convergence de suites

Exercice 8.5 (Moyenne de Cesàro)

Soit (u_n) une suite qui converge vers 0. Montrer que la suite $\left(\frac{u_1 + \ldots + u_n}{n}\right)$ converge vers 0 également. Que dire du cas de la convergence vers $\ell \neq 0$.

23

Exercice 8.6

Montrer qu'une suite d'entiers qui converge est stationnaire.

Exercice 8.7

Soit (u_n) une suite définie par $\begin{cases} 0 < u_0, u_1 < 1 \\ \forall n \in \mathbb{N}, \ u_{n+2} = \frac{\sqrt{u_{n+1}} + \sqrt{u_n}}{2} \end{cases}.$

1. Montrer que pour tout $n \in \mathbb{N}$, $u_n \in]0,1[$.

- 24
 - 2. Pour tout $n \in \mathbb{N}$, on pose $v_n = \min\{u_n, u_{n+1}\}$.
 - (a) Montrer que la suite $(v_n)_{n\in\mathbb{N}}$ est croissante.
 - (b) Montrer que $\forall n \in \mathbb{N}, v_{n+2} \geqslant \sqrt{v_n}$.
 - (c) En déduire que $\lim_{n \to +\infty} u_n = 1$.

Exercice 8.8

Déterminer la limite des suites définies par

(a)
$$u_n = \frac{3^n - 2^n}{3^n + 2^n}$$
;

(b)
$$v_n = \sqrt[n]{2 + (-1)^n}$$
.

Exercice 8.9

Soient (u_n) et (v_n) deux suites telles que $\lim_{n\to+\infty} u_n v_n = 6$ et que pour tout $n\in\mathbb{N}$, on ait $\begin{cases} 0 \leqslant u_n \leqslant 2 \\ 0 \leqslant v_n \leqslant 3 \end{cases}$

Que dire des suites (u_n) et (v_n) ?

Exercice 8.10

Établir la convergence ou la divergence de chacune des suites ci-dessous.

(a)
$$u_n = \frac{\sin n}{n}$$
;

(c)
$$\sqrt{n^2 + 3n} - \sqrt{n}$$

(b)
$$n^3 + 2n^2 - 5n + 1$$
;

(d)
$$\frac{n^2 - n \ln n}{n^2 + n(\ln n)^2}$$
.

Exercice 8.11

Soient (u_n) et (v_n) les suites définies pour tout $n \in \mathbb{N}$ par $u_n = \cos n$ et $v_n = \sin n$.

- 1. Montrer que si l'une de ces suites converge alors l'autre converge aussi.
- 2. En déduire que ces deux suites sont divergentes.

Exercice 8.12

Soient $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ deux suites définies par $b_0>a_0>0$ et pour tout $n\in\mathbb{N},\ a_{n+1}=\sqrt{a_nb_n}$ et $b_{n+1} = \frac{a_n + b_n}{2}.$

- 1. Montrer que $\forall n \in \mathbb{N}, a_n < a_{n+1} < b_n < b_{n+1}$.
- 2. Montrer que a_n et b_n convergent vers la même limite ℓ .